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Abstract

We provide easily-verifiable sufficient conditions on the primitives of a Bayesian game to guarantee 
the existence of a behavioral-strategy Bayes–Nash equilibrium. We allow players’ payoff functions to be 
discontinuous in actions, and illustrate the usefulness of our results via an example of an all-pay auction 
with general tie-breaking rules which cannot be handled by extant results.
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1. Introduction

Bayesian games, where each player observes his own private information and then all players 
choose actions simultaneously, have been extensively studied and found wide applications in 
many fields of economics. The notion of Bayesian equilibrium is a fundamental game-theoretic 
concept for analyzing such games. In many applied works, Bayesian games with discontinuous 
payoffs arise naturally. For example, in auctions or price competitions, players’ payoffs may not 
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be continuous when a tie occurs. However, many previous works focus on the case of continuous 
payoffs,1 while little is known about equilibrium existence results in Bayesian games with payoff 
discontinuities.

In a complete information environment, Reny (1999) showed that a better-reply secure game 
possesses a pure-strategy Nash equilibrium, and proposed the payoff security condition which 
is sufficient for a game to be better-reply secure together with some other conditions.2 Re-
cently, several authors have generalized the work of Reny (1999) to an incomplete information 
setting. Specifically, Carbonell-Nicolau and McLean (2015) extended the “uniform payoff secu-
rity” condition of Monteiro and Page (2007) and the “uniform diagonal security” condition of 
Prokopovych and Yannelis (2014) to the setting of Bayesian games, and showed the existence of 
behavioral/distributional-strategy equilibria. He and Yannelis (2015a) proposed the “finite payoff 
security” condition and proved the existence of pure-strategy equilibria.

The purpose of this paper is to provide a new equilibrium existence result for Bayesian games 
with discontinuous payoffs. Our result is based on a Bayesian generalization of the clever condi-
tion called “disjoint payoff matching”, which was introduced by Allison and Lepore (2014) for 
a normal form game. The advantage of this condition is that one only needs to check the payoff 
at each strategy profile itself. The standard payoff security-type condition forces one to check 
the payoffs in the neighborhood of each strategy profile, which is more demanding. Thus, our 
condition is relatively straightforward, and the equilibrium existence result can be easily verified 
for a large class of Bayesian games. Our result widens the applications in economics as we can 
cover situations that previous results in the literature are not readily applicable. As an illustrative 
example, we provide an application to an all-pay auction with general tie-breaking rules.

The rest of the paper is organized as follows. The model and our main results are presented 
in Section 2. Some preparatory results and the proof of the main theorem are collected in Sec-
tion 3. An illustrative application to an all-pay auction with general tie-breaking rules is given in 
Section 4. Section 5 concludes the paper.

2. Model

2.1. Bayesian game and behavioral-strategy equilibrium

We consider a Bayesian game as follows:

G = {ui,Xi, (Ti,Ti ), λ}i∈I .

• There is a finite set of players, I = {1, 2, . . . , n}.
• Player i’s action space Xi is a nonempty compact metric space, which is endowed with the 

Borel σ -algebra B(Xi). Denote X = ∏
i∈I Xi and B(X) = ⊗i∈IB(Xi); that is, B(X) is the 

product Borel σ -algebra.
• The measurable space (Ti, Ti ) represents the private information space of player i. Let 

T = ∏
i∈I Ti and T = ⊗i∈ITi .

• The common prior λ is a probability measure on the measurable space (T , T ).

1 See, for example, Milgrom and Weber (1985) and Balder (1988).
2 A number of recent papers have generalized the work of Reny (1999) in several directions; see Bagh and Jofre (2006), 

Carmona (2009), Bagh (2010), Carbonell-Nicolau and McLean (2013), Prokopovych (2013), Reny (2015), Carmona and 
Podczeck (2014, 2015), and He and Yannelis (2015b) among others.
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• For every player i ∈ I , ui : X × T → R+ is a B(X) ⊗ T -measurable function representing 
the payoff of player i, which is bounded by some γ > 0.3

As usual, we write t−i for an information profile of all players other than i, and T−i as the 
space of all such information profiles. We adopt similar notation for action profiles, strategy 
profiles and payoff profiles.

For every player i ∈ I , a pure strategy is a Ti -measurable function from Ti to Xi . Let Li be
the set of all possible pure strategies of player i, and L = ∏

i∈I Li .
A behavioral strategy of player i is a Ti -measurable function from Ti to �(Xi), where �(Xi)

denotes the space of all Borel probability measures on Xi under the topology of weak conver-
gence.4 A pure strategy can be viewed as a special case of a behavioral strategy by considering 
it as a Dirac measure for every ti . The set of all behavioral strategies of player i is denoted by 
Mi , and M = ∏

i∈I Mi .
Given a behavioral strategy profile f = (f1, f2, . . . , fn) ∈ M, the expected payoff of player 

i is

Ui(f ) =
∫
T

∫
X1

. . .

∫
Xn

ui(x1, . . . , xn, t1, . . . , tn)fn(dxn|tn) . . . f1(dx1|t1)λ(dt).

Definition 1. A behavioral-strategy equilibrium is a behavioral strategy profile f ∗ =
(f ∗

1 , f ∗
2 , . . . , f ∗

n ) ∈ M such that f ∗
i maximizes Ui(fi, f ∗−i ) for any fi ∈ Mi and each 

player i ∈ I .5

We impose the following assumption on the information structure. Let λi be the marginal 
probability of λ on (Ti, Ti ) for each i ∈ I . Suppose that (T , T , λ) and (Ti, Ti , λi) are complete 
probability measure spaces.

Assumption (Absolute Continuity (AC)). The probability measure λ is absolutely continuous 
with respect to ⊗i∈I λi with the corresponding Radon–Nikodym derivative ψ : T → R+.

This assumption is widely adopted in the setting of Bayesian games; see, for example, 
Milgrom and Weber (1985), Balder (1988), Jackson et al. (2002), Loeb and Sun (2006) and 
Carbonell-Nicolau and McLean (2015). Notice that the (AC) assumption is imposed in Milgrom 
and Weber (1985) and Balder (1988) even when the payoff function is continuous in the ac-
tion variables. If players have independent priors in the sense that λ = ⊗i∈I λi , then the (AC) 
assumption holds trivially.

3 Since ui is bounded, we can assume that ui takes values in R+ without loss of generality.
4 That is, a behavioral strategy fi is a transition probability from (Ti , Ti ) to (Xi , B(Xi)) such that fi(·|ti ) is a prob-

ability measure on (Xi , B(Xi)) for all ti ∈ Ti , and fi(B|·) is a Ti -measurable function for every B ∈ B(Xi). If λi is 
a probability measure on (Ti , Ti ), then λi � fi denotes a probability measure on Ti × Xi such that λi � fi(A × B) =∫
A fi(B|ti )λi (dti ) for any measurable subsets A ⊆ Ti and B ⊆ Xi .
5 Milgrom and Weber (1985) considered distributional strategies and Balder (1988) extended their results to behav-

ioral strategies. As remarked in Milgrom and Weber (1985), every behavioral strategy gives rise to a natural distributional 
strategy, and every distributional strategy corresponds to an equivalent class of behavioral strategies defined as the in-
duced regular conditional probabilities. We consider behavioral strategies in this paper for simplicity, but all the results 
can be easily extended to distributional strategies.
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2.2. Normal form game

Below, we convert a Bayesian game G to an (ex ante) normal form game G0. If one can 
show the existence of a Nash equilibrium in the game G0, then this equilibrium corresponds to a 
behavioral-strategy equilibrium in the original Bayesian game G.

A normal form game Gd is a collection (Xi, ui)i∈I , where Xi and ui are the action space and 
payoff function of player i, respectively. We view a Bayesian game G as a normal norm game 
and denote it by G0 = (Mi , Ui)i∈I , where Mi is the set of all possible behavioral strategies, and 
Ui is the expected payoff function of player i.

A Nash equilibrium in the game G0 is a strategy profile f ∗ = (f ∗
1 , f ∗

2 , . . . , f ∗
n ) ∈ M such 

that f ∗
i maximizes Ui(fi, f ∗−i ) for any fi ∈ Mi and each player i ∈ I . Thus, if f ∗ is a Nash 

equilibrium in the game G0, then it is also a behavioral-strategy equilibrium in the original 
Bayesian game G.

2.3. Main result

Reny (1999) proved that under some regularity conditions, a payoff secure game has a pure-
strategy equilibrium.6 To prove that the mixed extension of a normal form game is payoff secure, 
Allison and Lepore (2014) introduced the interesting notion of “disjoint payoff matching” in 
games with complete information. Below, we extend this notion to the setting of Bayesian games, 
and show that the ex ante game G0 is payoff secure.

First, we describe the notion of “payoff security”, which is due to Reny (1999).

Definition 2. In a normal form game Gd , player i can secure a payoff α ∈ R at (xi, x−i ) ∈ Xi ×
X−i if there is some xi ∈ Xi such that ui(xi, y−i ) ≥ α for all y−i in some open neighborhood 
of x−i .

The game Gd is called “payoff secure” if for every i ∈ I , (xi, x−i ) ∈ Xi × X−i and ε > 0, 
player i can secure a payoff ui(xi, x−i ) − ε at (xi, x−i ).

Consider the points at which a player’s payoff function is discontinuous in other players’ 
strategies. In particular, let Di : Ti × Xi → T−i × X−i be defined by

Di(ti , xi) = {(t−i , x−i ) ∈ T−i × X−i : ui(xi, ·, ti , t−i ) is discontinuous in x−i}.
Suppose that Di has a B(X) ⊗ T -measurable graph for each i ∈ I . Given a pure strategy fi of 
player i, denote Dfi

i (ti) = Di(ti , fi(ti)).

Remark 1. In many applications such as auctions and price competition, the discontinuity arises 
due to the action variables, and independently of the state variables. That is, the correspondence 
Di does not depend on T in the sense that if (t, x) ∈ Gr(Di), then (t ′, x) ∈ Gr(Di) for any t ′ ∈ T . 
It is usually easy to check that Di has a measurable graph in such cases.7

Definition 3. A Bayesian game G is said to satisfy the condition of “random disjoint payoff 
matching” if for any fi ∈ Li , there exists a sequence of deviations {gk

i }∞k=1 ⊆ Li such that the 
following conditions hold:

6 See Prokopovych (2011) for an alternative proof for metric games.
7 If A is a correspondence from a space Y to Z, then Gr(A) ⊆ Y × Z denotes the graph of A.
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1. for λ-almost all t = (ti , t−i ) ∈ T and all x−i ∈ X−i ,

lim inf
k→∞ ui(g

k
i (ti), x−i , ti , t−i ) ≥ ui(fi(ti), x−i , ti , t−i );

2. lim supk→∞ Di(ti , gk
i (ti)) = ∅ for any i ∈ I and λi -almost all ti ∈ Ti .8

When Ti is a singletons set for each player i ∈ I , the above definition reduces to be the notion 
of disjoint payoff matching introduced by Allison and Lepore (2014) in a complete information 
environment.

The following theorem is our main result, which shows that the random disjoint payoff match-
ing condition of a Bayesian game G could guarantee the payoff security of the game G0. Its proof 
is provided in Section 3.

Theorem 1. Under Assumption (AC), if a Bayesian game G satisfies the random disjoint payoff 
matching condition, then the game G0 is payoff secure.

2.4. Existence of behavioral-strategy equilibria

Theorem 1 above shows that the random disjoint payoff matching condition of a Bayesian 
game G guarantees the payoff security of the ex ante game G0. Reny (1999) showed that a 
payoff secure game has a pure-strategy Nash equilibrium provided that the game has compact 
action spaces, and each player’s payoff function is quasiconcave in his own actions and satisfies 
some upper semicontinuity condition.

In the following theorem, we prove the existence of behavioral-strategy equilibria in Bayesian 
games based on Theorem 1.

Theorem 2. Suppose that a Bayesian game G satisfies the random disjoint payoff matching 
condition and Assumption (AC). Furthermore, suppose that the mapping 

∑
i∈I ui(·, t) : X → R

is upper semicontinuous for each t ∈ T . Then the game G0 has a Nash equilibrium, which is a 
behavioral-strategy equilibrium for the Bayesian game G.

Proof. By Theorem 1, the game G0 is payoff secure. Then applying Lemma 3 in Carbonell-
Nicolau and McLean (2015), the mapping

f ∈M →
∑
i∈I

Ui(f )

is upper semicontinuous. By Proposition 3.2 and Theorem 3.1 in Reny (1999), the game G0 has 
a Nash equilibrium, which implies that G has a behavioral-strategy equilibrium. �
Remark 2. By extending the uniform payoff security condition of Monteiro and Page (2007)
and adopting the (AC) assumption, Carbonell-Nicolau and McLean (2015) proved the existence 
of behavioral/distributional-strategy equilibria in Bayesian games with discontinuous payoffs. In 
particular, they showed that the ex ante game G0 is payoff secure when the Bayesian game 
G satisfies their uniform payoff security condition. Our result does not cover the result of 
Carbonell-Nicolau and McLean (2015) and vice versa. Notice that our condition only needs 

8 For a sequence of sets {Ak}, lim supk→∞ Ak = ∩∞ ∪∞ Aj and lim infk→∞ Ak = ∪∞ ∩∞ Aj .

k=1 j=k k=1 j=k
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to check the payoffs at each strategy profile itself, but not for those payoffs in the neighborhood 
of the strategy profile.

Remark 3. By adopting the “relative diffuseness” condition of He and Sun (2014) and the “uni-
form payoff security” condition of Carbonell-Nicolau and McLean (2015), He and Yannelis
(2015a) presented a purification result for behavioral-strategy equilibrium in Bayesian games 
with discontinuous payoffs. It is straightforward to check that one can also obtain the existence 
of pure-strategy equilibria here via a similar purification result based on the “relative diffuseness” 
condition and Theorem 2.

3. Proof of Theorem 1

3.1. Preparatory results

The proof of Theorem 1 is based on a clever argument of Allison and Lepore (2014). However, 
our incomplete information framework introduces several subtle difficulties and necessitates new 
arguments that are far from trivial. Below, we present some technical results needed for the proof 
of Theorem 1.

We first consider the topology on the space Mi for each i ∈ I . Let Hi be the space of uni-
formly finite transition measures from (Ti, Ti , λi) to (Xi, B(Xi)).

Definition 4. The weak topology on Hi is the weakest topology with respect to which the func-
tional

ν →
∫
Ti

∫
Xi

c(ti , xi)ν(dxi |ti )λi(dti )

is continuous on Hi for every integrably bounded Carathéodory function c.9

The set Mi can be viewed as a subspace of Hi endowed with its relative topology. The 
Cartesian product M = 	i∈IMi is endowed with the usual product topology.

The following lemma shows that each player i in the game G0 has a nonempty, convex and 
weakly compact strategy space Mi .

Lemma 1. Mi is a nonempty, convex and weakly compact subset of the topological vector 
space Hi .

Proof. It is obvious that Mi is nonempty and convex. The weak compactness of Mi is from 
Theorem 2.3 of Balder (1988). �
Lemma 2. If Mi is viewed as a subspace of Hi endowed with its relative topology, then the 
functional

9 The function c is said to be a Carathéodory function if c(·, xi ) is Ti -measurable for each xi ∈ Xi and c(ti , ·) is 
continuous on Xi for each ti ∈ Ti . In addition, c is called integrably bounded if there exists a λi -integrable function 
χ : Ti → R+ such that |c(ti , xi )| ≤ χ(ti ) for all (ti , xi ) ∈ Ti × Xi .
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ν →
∫
Ti

∫
Xi

c(ti , xi)ν(dxi |ti )λi(dti )

is lower semicontinuous for every function c : Ti × Xi → (−∞, +∞] such that

1. c(ti , ·) is lower semicontinuous on Xi for every ti ∈ Ti ;
2. c is Ti ⊗B(Xi)-measurable;
3. c is integrably bounded from below in the sense that there exists some integrable function 

h : Ti → R such that c(ti, xi) ≥ h(ti) for all ti ∈ Ti and xi ∈ Xi .

Proof. Lemma 2 is from Theorem 2.2(a) in Balder (1988). �
For any nonempty subset J ⊆ I , let M̃J be the space of transition probabilities from 

(
∏

j∈J Tj , ⊗j∈JTj , ⊗j∈J λj ) to 
∏

j∈J Xj , and H̃J the space of uniformly finite transition mea-

sures from (
∏

j∈J Tj , ⊗j∈JTj , ⊗j∈J λj ) to 
∏

j∈J Xj . Suppose that H̃J is endowed with the 

weak topology as defined in Definition 4, and M̃J is viewed as a subset of H̃J endowed with 
the relative topology.

Lemma 3. The mapping (fj )j∈J → ⊗j∈J fj from 
∏

j∈J Mj to M̃J is continuous.

Proof. Theorem 2.5 in Balder (1988) considers the case that J has two elements. It is obvious 
that his argument still holds for any finite set J . �

In the proof of our Theorem 1, we need to deal with some subtle measurability issues based on 
the projection theorem and Aumann’s measurable selection theorem. These theorems are stated 
below for the convenience of the reader.

Projection Theorem: Let X be a Polish space and (S, S, μ) a complete finite measure space. 
If a set E belongs to S ⊗B(X), then the projection of E on S belongs to S .

Aumann’s measurable selection theorem: Let X be a Polish space and (S, S, μ) a complete 
finite measure space. Suppose that F is a nonempty valued correspondence from S to X hav-
ing an S ⊗ B(X)-measurable graph. Then F admits a measurable selection; that is, there is a 
measurable function f from S to X such that f (s) ∈ F(s) for μ-almost all s ∈ S.

3.2. Proof

We now proceed with the proof of Theorem 1.
Fix a behavioral strategy profile (f1, . . . , fn) ∈ M, a player i ∈ I and ε > 0.
Let Si : Ti → Xi be a correspondence defined by

Si(ti) = {xi ∈ Xi :
∫

T−i

∫
X−i

ui(xi, x−i , ti , t−i )ψ(ti , t−i )f−i (dx−i |t−i ) ⊗j �=i λi(dt−i )

≥
∫

T−i

∫
X

ui(xi, x−i , ti , t−i )ψ(ti , t−i )f (dx|ti , t−i ) ⊗j �=i λi(dt−i )}.
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It is obvious that for each fixed ti , Si(ti) is nonempty. Since ui is jointly measurable, and f and 
ψ are measurable, the correspondence Si has a B(Xi) ⊗ Ti -measurable graph. By the Aumann’s 
measurable selection theorem, Si has a Ti -measurable selection f ′

i . Therefore, we have that∫
T

∫
X−i

ui(f
′
i (ti ), x−i , ti , t−i )f−i (dx−i |t−i )λ(dt) ≥

∫
T

∫
X

ui(xi, x−i , ti , t−i )f (dx|t)λ(dt).

By the random disjoint payoff matching condition, there exists a sequence of pure strategies 
{gk

i } ⊆ Li such that for λ-almost all t = (ti , t−i ) ∈ T and all x−i ∈ X−i ,

lim inf
k→∞ ui(g

k
i (ti), x−i , ti , t−i ) ≥ ui(f

′
i (ti ), x−i , ti , t−i ),

and lim supk→∞ Di(ti , gk
i (ti)) = ∅ for any i ∈ I and λi -almost all ti ∈ Ti .

Let

Ek
i (ti) = {(t−i , x−i ) : ui(g

k
i (ti), x−i , ti , t−i ) > ui(f

′
i (ti ), x−i , ti , t−i ) − ε}.

Since the functions ui , gk
i and f ′

i are all measurable, the correspondence Ek
i has a B(X−i ) ⊗

T -measurable graph. For λ-almost all t ∈ T and all x−i ∈ X−i , since

lim inf
k→∞ ui(g

k
i (ti), x−i , ti , t−i ) ≥ ui(f

′
i (ti ), x−i , ti , t−i ),

we have (t, x−i ) ∈ lim infk→∞ Gr(Ek
i ). As a result,

λ � f−i

(
lim inf
k→∞ Gr(Ek

i )

)
= 1,

which implies that

lim inf
k→∞ λ � f−i

(
Gr(Ek

i )
)

≥ λ � f−i

(
lim inf
k→∞ Gr(Ek

i )

)
= 1.

Thus, limk→∞ λ � f−i

(
Gr(Ek

i )
) = 1.

Notice that the ti-section of the set lim supk→∞ Gr(D
gk
i

i ) is lim supk→∞ Di(ti , gk
i (ti)), which 

is the empty set for λi-almost all ti ∈ Ti . Thus, λ � f−i

(
lim supk→∞ Gr(D

gk
i

i )

)
= 0, and

lim sup
k→∞

λ � f−i

(
Gr(D

gk
i

i )

)
≤ λ � f−i

(
lim sup
k→∞

Gr(D
gk
i

i )

)
= 0.

As a result, limk→∞ λ � f−i

(
Gr(D

gk
i

i )

)
= 0.

Therefore, limk→∞ λ � f−i

(
Gr(Ek

i ) \ Gr(D
gk
i

i )

)
= 1. There exists some positive integer 

K > 0 such that for any k ≥ K ,

λ � f−i

(
Gr(Ek

i ) \ Gr(D
gk
i

i )

)
> 1 − ε.

Let gi = gK and F = Gr(EK) \ Gr(D
gK
i ). Then we have
i i i
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∫
F

ui(gi(ti), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i ))

≥
∫
F

ui(f
′
i (ti ), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i )) − ε,

which implies that10∫
T ×X−i

ui(gi(ti), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i ))

=
∫
F

ui(gi(ti), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i ))

+
∫
Fc

ui(gi(ti), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i ))

≥
∫
F

ui(f
′
i (ti ), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i )) − ε

+
∫
Fc

ui(f
′
i (ti ), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i )) − γ · ε

=
∫

T ×X−i

ui(f
′
i (ti ), x−i , ti , t−i )λ � f−i (d(ti , t−i , x−i )) − (γ + 1)ε.

Since X−i is a compact metric space, it is second countable (see Royden and Fitzpatrick, 
2010, Proposition 25, p. 204). Thus, we can find a countable base {Vm}m≥1 for X−i . Let

hm
i (x−i , t) =

{
infx′−i∈Vm

ui(gi(ti), x
′−i , ti , t−i ), if x−i ∈ Vm,

−2γ, otherwise.

It is easy to see that hm
i (·, t) is lower semicontinuous on X−i for each fixed t ∈ T and m ≥ 1. It 

can be easily checked that hm
i is a jointly measurable function. Indeed, it suffices to show that 

for any c ≥ 0, the set {(x−i , t) ∈ X−i × T : hm
i (x−i , t) < c} is B(X−i ) ⊗ T -measurable. Since ui

is jointly measurable and gi is Ti -measurable, the set

{(x−i , t) ∈ Vm × T : ui(gi(ti), x−i , ti , t−i ) < c}
is B(X−i ) ⊗ T -measurable. By the Projection Theorem, the projection of the above set on T , 
denoted as Tm, is a T -measurable subset. Notice that

{(x−i , t) ∈ X−i × T : hm
i (x−i , t) < c} = (Vm × Tm) ∪ (V c

m × T ),

which is B(X−i) ⊗ T -measurable. Thus, hm
i is a jointly measurable function.

Let ui(x−i , t) = supm≥1 hm
i (x−i , t). For each fixed t ∈ T , as in the proof of Reny (1999, The-

orem 3.1), ui(·, t) is the pointwise supremum of a sequence of lower semicontinuous function, 
which is also lower semicontinuous on X−i . In addition, ui is the supremum of a sequence of 

10 For any subset E, Ec denotes the complement of the set E.
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B(X−i ) ⊗ T -measurable functions, which is also B(X−i) ⊗ T -measurable. Define a function 
Hl

i : ∏
j �=i Mj →R as follows: for g−i = (g1, . . . , gi−1, gi+1, . . . , gn) ∈ ∏

j �=i Mj ,

Hl
i (g−i ) =

∫
T

∫
X−i

ui(x−i , t)ψ(t) ⊗j �=i gj (dxj |tj ) ⊗i∈I λi(dt).

Let φ(x−i , t−i ) =
∫
Ti

ui(x−i , t)ψ(t)λi(dti ). Since ui(x−i , t)ψ(t) is lower semicontinu-
ous in x−i , jointly measurable and integrably bounded, φ is also lower semicontinuous 
in x−i , jointly measurable and integrably bounded. By Lemma 3, the functional g−i =
(g1, . . . , gi−1, gi+1, . . . , gn) → ⊗j �=igj from 

∏
j Mj �=i to M̃−i is continuous. Then by 

Lemma 2, the functional

ν →
∫

T−i

∫
X−i

φ(x−i , t−i )ν(dx−i |t−i )λ−i (dt−i )

is lower semicontinuous on M̃−i . Since Hl
i is the composition of these two functionals, it is 

lower semicontinuous. As a result, there is an open neighborhood N−i(f−i ) ⊆ ∏
j �=i Mj of f−i

such that for any g−i ∈ N−i (f−i ),∫
T

∫
X−i

ui(x−i , t)ψ(t)g−i (dx−i |t−i ) ⊗i∈I λi(dt)

≥
∫
T

∫
X−i

ui(x−i , t)ψ(t)f−i (dx−i |t−i ) ⊗i∈I λi(dt) − ε.

That is, ∫
T

∫
X−i

ui(x−i , t)g−i (dx−i |t−i )λ(dt)

≥
∫
T

∫
X−i

ui(x−i , t)f−i (dx−i |t−i )λ(dt) − ε.

Recall that F = Gr(EK
i ) \Gr(D

gK
i

i ). Since ui(t, gi(ti), ·) is continuous on the t -section {x−i ∈
X−i : (x−i , t) ∈ F } of F , we have ui(x−i , t) = ui(gi(ti), x−i , t) for any (x−i , t) ∈ F . As a result,∫

T

∫
X−i

ui(x−i , t)f−i (dx−i |t−i )λ(dt)

=
∫
F

ui(x−i , t)λ � f−i (d(t, x−i )) +
∫
Fc

ui(x−i , t)λ � f−i (d(t, x−i ))

≥
∫
F

ui(gi(ti), x−i , t)λ � f−i (d(t, x−i ))

>

∫
ui(gi(ti), x−i , t)λ � f−i (d(t, x−i )) +

∫
c

ui(gi(ti), x−i , t)λ � f−i (d(t, x−i )) − γ · ε

F F
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=
∫
T

∫
X−i

ui(gi(ti), x−i , t)f−i (dx−i |t−i )λ(dt) − γ · ε.

Therefore, for any g−i ∈ N−i (f−i ), we have∫
T

∫
X−i

ui(gi(ti), x−i , t)g−i (dx−i |t−i )λ(dt)

≥
∫
T

∫
X−i

ui(x−i , t)g−i (dx−i |t−i )λ(dt)

≥
∫
T

∫
X−i

ui(x−i , t)f−i (dx−i |t−i )λ(dt) − ε

≥
∫
T

∫
X−i

ui(gi(ti), x−i , t)f−i (dx−i |t−i )λ(dt) − (γ + 1) · ε

≥
∫
T

∫
X−i

ui(f
′
i (ti ), x−i , t)f−i (dx−i |t−i )λ(dt) − 2(γ + 1) · ε

≥
∫
T

∫
X

ui(xi, x−i , t)f (dx|t)λ(dt) − 2(γ + 1) · ε,

and consequently, the game G0 is payoff secure.

4. An application

Below, we provide an example of an all-pay auction with general tie-breaking rules to demon-
strate the usefulness of our result.11

All-pay auction with general tie-breaking rules Suppose that N bidders compete for an object. 
Each bidder’s valuation of the object is given by a measurable function v : 	i∈I Ti → [0, 1], 
where Ti is the state space, i = 1, . . . , N . The common prior is λ, and λ is absolutely continuous 
with respect to ⊗i∈I λi . Bidder i observes his own state ti and submits a bid xi ∈ Xi = [0, 1]. 
The bidder who submits the highest bid wins the object and all bidders need to pay their bids. If 
multiple bidders submit the highest bid simultaneously, then the tie is broken as follows:

ui(x1, . . . , xN , t1, . . . , tN ) =⎧⎨
⎩

−xi, xi < maxj∈I xj ,
ξi (x1,...,xN )∑

k∈I :xk=maxj∈I xj
ξk(x1,...,xN )

· v(t1, . . . , tN ) − xi, xi = maxj∈I xj ;

11 Jackson et al. (2002) showed the existence of a distributional-strategy equilibrium for discontinuous games with 
incomplete information by proposing a solution concept where the payoff is “endogenously defined” at the disconti-
nuities. Araujo et al. (2008) first considered non-monotonic functions in auctions and showed that an all-pay auction 
tie-breaking rule is sufficient for the existence of pure-strategy equilibrium for a class of auctions. Carbonell-Nicolau 
and McLean (2015) considered an all-pay auction with the standard tie-breaking rule that the winning players share the 
object with equal probability. For other variations, see, for example, Klose and Kovenock (2015) for an all-pay auction 
with identity-dependent externalities. The results of this section are not covered by any of the above papers.
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where ξ = (ξ1, . . . , ξN) : [0, 1]N → (0, 1]N is a continuous function which assesses the relative 
importance of each bidder’s position when breaking the tie. In particular, if ξi ≡ 1 for any i, then 
the tie is broken via the equal probability rule. However, this is not necessary.

Proposition 1. An all-pay auction with general tie-breaking rules satisfies the random disjoint 
payoff matching condition.

Proof. Given any bidder i and fi ∈ Li , let

gk
i (ti) =

{
min{fi(ti) + 1

k
,1}, fi(ti) < 1,

1
k
, fi(ti) = 1.

It is obvious that gk
i ∈ Li for any k ≥ 1.

Fix any t ∈ T and x−i ∈ X−i . If fi(ti) = 1, then ui(fi(ti), x−i , ti , t−i ) ≤ 0 and
lim infk→∞ ui(g

k
i (ti), x−i , ti , t−i ) ≥ 0. If fi(ti) < 1, we need to consider three possible cases.

1. If bidder i is the unique winner, then he is still the unique winner by adopting the strategy 
gk

i (ti) since gk
i (ti) > fi(ti). Since gk

i (ti) → fi(ti) and ξ is a continuous function, we have 
limk→∞ ui(g

k
i (ti), x−i , ti , t−i ) = ui(fi(ti), x−i , ti , t−i ).

2. If bidder i is one of the multiple winners, then he becomes the unique winner by adopting 
the strategy gk

i (ti). Then

lim
k→∞ui(g

k
i (ti), x−i , ti , t−i ) = vi(ti , t−i ) − fi(ti) ≥ ui(fi(ti), x−i , ti , t−i ).

3. If bidder i does not get the object, then he still loses the game by adopting gk
i (ti) for suffi-

ciently large k. As a result, limk→∞ ui(g
k
i (ti), x−i , ti , t−i ) = ui(fi(ti), x−i , ti , t−i ).

Thus, we have

lim inf
k→∞ ui(g

k
i (ti), x−i , ti , t−i ) ≥ ui(fi(ti), x−i , ti , t−i ),

which implies that condition (1) of Definition 3 is satisfied. In addition, for all ti ∈ Ti , 
Di(ti , gk

i (ti)) =
{[0, gk

i (ti)]N−1 \ [0, gk
i (ti))

N−1
} × T−i . Since gk

i (ti) �= gk′
i (ti ) for sufficiently 

large k and k′, we have

lim sup
k→∞

Di(ti , g
k
i (ti)) = ∅

for any ti ∈ Ti . Thus, condition (2) of Definition 3 also holds.
Therefore, an all-pay auction with general tie-breaking rules satisfies the random disjoint 

payoff matching condition. �
Since 

∑
i∈I ui(t, x) = v(t) − ∑

i∈I xi , 
∑

i∈I ui(t, ·) is upper semicontinuous for every t . 
Thus, the existence of a behavioral-strategy equilibrium follows immediately by combining The-
orem 2 and Proposition 1.

Corollary 1. A behavioral-strategy equilibrium exists in an all-pay auction with general tie-
breaking rules.
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Remark 4. Allison and Lepore (2014) presented a Bertrand–Edgeworth oligopoly model which 
has general specifications of costs, residual demand rationing, and tie-breaking rules. They 
showed that this price competition problem satisfies the disjoint payoff matching condition and 
a mixed-strategy equilibrium exists. One can easily extend their model to an incomplete infor-
mation environment and formulate the problem as a Bayesian game. Then by referring to our 
Theorems 1 and 2, one can prove the existence of a behavioral-strategy equilibrium. For fur-
ther applications on Bayesian games with discontinuous payoffs including the war of attrition, 
Cournot competition and rent seeking, see Carbonell-Nicolau and McLean (2015).

5. Concluding remarks

The purpose of this paper was to prove a new theorem on the existence of behavioral-strategy 
equilibria for Bayesian games with discontinuous payoffs. Our result is different from the re-
cent ones in Carbonell-Nicolau and McLean (2015) and He and Yannelis (2015a). We applied 
our equilibrium existence theorem to an all-pay auction with general tie-breaking rules, and also 
indicated further applications to oligopoly theory. It remains an open question whether the ex-
istence result of this paper can be extended to a setting of a continuum of players. Such an 
extension will further widen the economic applications.
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